

Communicating Vital Statistics Through Visualizations

Workshop on Vital Statistics for North and Central Asian Countries Bishkek, Kyrgyzstan, 7-11 October 2019

Session objectives

By the end of the session, participants will be able to:

- Describe and compare the main types of data visualization
- Identify the factors involved in choosing the type of data visualization
- List design principles that contribute to effective data visualization
- Visualize vital statistics data using maps

Factors in Choosing Visualization Type

Communication Purpose

- Change
- Comparison
- Composition
- Correlation

Characteristics of Data

- Number of series displayed
- Number of points displayed within each series

Line Graph

Matching Visualization to Purpose and Data

Communication Purpose:

I want to show the change over time in life expectancy

Characteristics of Data:

I want to show one series with many data points

Matching Visualization to Purpose and Data

Communication Purpose:

I want to show the change over time in life expectancy

I also want to compare values across sex

Characteristics of Data:

I want to show two series with many data points

Visualization Type: Line

Visualization Type: Line

Figure 7: Age Specific Mortality Rates by period, (2015-2017)

Source: Republic of Fiji Vital Statistics Report 2017

Column/Bar

Matching Visualization to Purpose and Data

Communication Purpose:

I want to compare values for mortality rates across categories

Characteristics of Data:

I want to show rates for five groups (five series)

I want to show information for two years (two data points for each series)

Visualization Type: Column

Figure 13. Age-adjusted Premature Death (Age <65 years) Rates by Neighborhood Poverty*, New York City Residents, 2008 and 2017

Source: New York City Department of Health and Mental Hygiene

Matching Visualization to Purpose and Data

Communication Purpose:

I want to compare values for total fertility rates across regions

Characteristics of Data:

I want to show rates for only one group (one series)

I want to show information for 15 regions (15 data points)

Visualization Type: Bar

Figure 4.2: Crude Birth Rate by Province, Zambia 2016

Stacked Column/Bar

Matching Visualization to Purpose and Data

Communication Purpose:

I want to break down causes of death (composition)

Characteristics of Data:

I want to show rates for two time period (two series)

I want to show three broad groups of causes (three data points for each series)

Visualization Type: Stacked Column

CAUSES OF DEATH
WORLD-WIDE, 2000 AND 2016

Visualization Type: Stacked Column

Source: World Health Organization

Scatter

Matching Visualization to Purpose and Data

Communication Purpose:

I want to show the **correlation** between TB death rates and HIV death rates

Characteristics of Data:

I want to show rates for ten different countries (ten data points)

Visualization Type: Scatter

Design Principles

Guide Viewer

- Label sufficiently
- Visually link related elements
- Create a visual hierarchy
- Simplify data comparisons

Eliminate Distractions

- Present text as it will be scanned
- Limit non-data elements
- Use formatting purposively
- Be cautious with images

Mapping Vital Statistics

Importance of geography — why map?

- Relating data to location as powerful analysis
 - Visualizing health outcomes by geography
 - Identifying geographic trends

Figure 11.2: Distribution of Hospital Live Births by place of occurrence in Sri Lanka, 2016

Source: Medical Statistics unit

Choropleth Maps

- Used for prevalence, standardized rates and ratios linked to administrative areas
- Division of data into categories
 - Rankings from high to low or low to high
 - Number of categories from 3–6

Crude Deaths Rates – Mumbai, 2015

Legends

- A legend defines symbols and/or colors important to the map
 - Information necessary for reader
- Not all legend pieces are needed in map
 - Bar scales necessary if distance is important
 - If map does not point true north, a compass can be added for orientation if important

4.7 **-** 5.4 5.5 **-** 6.3

6.4 - 6.6

6.7 - 7.0

7.1 - 8.7

Crude Deaths Rates – Mumbai, 2015

What is Needed for Mapping

- Data for geographical area
 - Shapefiles for areas to be mapped
 - Administrative areas for choropleth maps
- Health data or events linked to location
 - Latitude/longitude of events
 - General location
 - Addresses for geocoding
- Software

Limitations of Mapping

- Reliance on spatial data
- Cannot show all factors relevant to health issue
- Cannot convey all information necessary for understanding health issue

Summary

- When choosing and creating visualizations, consider:
 - The story you want to tell
 - Communication purpose
 - Characteristics of data
 - Design principles
- Mapping health information can be a compelling visual method

Acknowledgements

- Bloomberg Philanthropies Data for Health Initiative
- Vital Strategies
- US Centers for Disease Control and Prevention
- University of Melbourne
- Statistics Norway
- ESCAP
- EFTA

